IV More on Dehn Surgeny
A. Altering Surgery Diagrams
we would like to know how to manipulate Dehn surgery descriptions of 3-manifolds
lemma 1:

called a slam dunk

Proof: doing n-surgery on K is the result of removing a nbhd of K from S^{3} and gluing in $S^{\prime} \times D^{2}$ to ∂S_{K}^{3} by

$$
\phi=\left[\begin{array}{cc}
0 & 1 \\
-1 & n
\end{array}\right]
$$

so $S_{k}^{3}(n)=S_{k}^{3} u_{\phi} S^{1} \times D^{2}$

the unknot U in picture is a meridian to K so isotop U to ∂S_{k}^{3} and then transtan to $S^{\prime} \times D^{2}$ via ϕ^{-1}

$$
\phi^{-1}(U)=\left(\begin{array}{cc}
n & -1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{-1}{0}
$$

So in $S_{K}^{3}(n) U$ is is otopic to

now a noble $N(U)$ of U is a subset of $S^{\prime} \times D^{2}$ such that $\overline{S^{\prime} \times D^{2}-N(U)} \cong T^{2} \times[0,1]$

So $S_{K}^{3}(n)$ is

now for r / s surgery on U we remove N(U) and glue by a map
$\psi=\left(\begin{array}{cc}s^{\prime} & s \\ r^{\prime} r\end{array}\right) \quad s t \operatorname{det} \psi=1$
so $\left(S_{K}^{3}(n)\right)_{U}(r / s)$ is

by lemma I.T this is the save as

$$
\phi \circ \psi=\left(\begin{array}{cc}
0 & 1 \\
-1 & n
\end{array}\right)\left(\begin{array}{ll}
s^{\prime} & s \\
r^{\prime} & r
\end{array}\right)=\left(\begin{array}{cc}
r^{\prime} & r \\
-s^{\prime}+n r^{\prime} & -s+n r
\end{array}\right)
$$

so meridian mops to $\binom{r}{-s+n r}$
ie this is n-sir surgay on K
exencise: to express surgery on U we needed a pretened framing on U, make sure the framing on U when pushed into $S^{1} \times D^{2}$ was unchanged, ie. ϕ^{-1} didn't change iF! (necessary for our description of ψ)

Corollary 2:
given $p_{1} q$ relatively prime, one can find $r_{1} \ldots r_{k}$ such that $p / q=r_{1}-\frac{1}{r_{2}-\frac{1}{\cdots-\frac{1}{r_{k}}}}$
then

Proof: just slam dunk $k-1$ times
example: $-2,2,2,2$

1) $\circlearrowright 0=0^{-5 / 4}$
both describe $L(5,4)$
2) $\left.{ }^{-m}\right)^{-n}=\bigcirc^{-m+\frac{1}{n}}=\frac{-m n+1}{n}$
so $L(m n-1, m) \cong \angle(m n-1, n)$
" $0-n+\frac{1}{m}=\frac{-n m+1}{m}$ very cool, this is not completely obvious!

Remark: Cor 2 + Lickorish, Wallace Th (Thm․ 5) says that any closed oriented 3-mfd is Den surgery on a link in 5^{3} with all surgery wefficients being integers
(actually a careful look at the proof of TḧㅡI. 5 already shows this!)
For our next move we need linking numbers if K_{1} and K_{2} are oriented knots in a homology sphere M then $\left[K_{2}\right] \in H_{2}\left(M_{k_{1}}\right) \cong \mathbb{Z}$ gen by $\left[\mu_{1}\right]$
so $\left[k_{2}\right]=m\left[\mu_{1}\right]$ some $m \in \mathbb{Z}$ we define the linking number to be $1 k\left(K_{1}, K_{2}\right)=m$ recall \exists an embedded surface $2, c M$ such that $\partial \Sigma_{1}=K_{1}$ (as oneinted manifolds)
note: $\Sigma_{1} \cap \mu_{1}=+1$

$$
\text { so } \begin{aligned}
1 k\left(K_{1}, K_{2}\right) & =m\left(\Sigma_{1} \wedge\left[\mu_{1}\right]\right)=\Sigma_{1} \cap\left(m\left[\mu_{1}\right]\right) \\
& =\Sigma_{1} \cap\left[K_{2}\right]
\end{aligned}
$$

now let's compute $L k\left(K_{1}, k_{2}\right)$ for $K_{1}, K_{2} \subset \mathbb{R}^{3} \subset S^{3}$

- project K_{1} to $x y$-plane
- construct a seifat surface as follows

1) at each crossing of K,

$$
\lambda \underset{\text { split }}{ }) \hat{}
$$

so that or ${ }^{n}$ is respected get a bunch of circles

2) pick disks in \mathbb{R}^{2} that these circles bound

3) at each crossing glue in a half twisted strip to creat a surface $\mathrm{w} \partial=K$,

this gives a surface in \mathbb{R}^{3} that is almost in $x y$-plane and $\partial=K_{1}$
exercise: find surface for
 now to compute linking look at the diagram

1) Think of trying to pull K_{2} towards you
you only get stack when K_{2} passes under K_{1}
so the only place K_{2} can intersect Σ_{1} is near an under crossing
2) at an under crossing you see

 point!
so $\mid k\left(K_{1}, K_{2}\right)=\sum_{\substack{\text { crossings } \\ \text { of } k_{2} \text { ind en } K_{1}}} \varepsilon_{c}$ where ε_{c} is sign above
note: the Seifent longitude for K is exactly the curve λ with $\operatorname{lk}\left(K_{1} \lambda\right)=0$
all other longitudes of the form $\lambda+m \mu$ where μ is the meridian of K and $m \in \mathbb{Z}$
lemma 3:

Proof: let U be the unknot

$$
S_{u}^{3}=S^{1} \times D^{2}
$$

$s_{v}{ }^{3}$

$N(u)$
let $\psi: S_{U}^{3} \rightarrow S_{U}^{3}$ be given by $(\phi,(r, \theta)) \mapsto(\phi,(r, \theta \pm \phi))$ on on $\partial\left(S_{0}^{3}\right), 4$ given by

$$
\left(\begin{array}{cc}
1 & \pm 1 \\
0 & 1
\end{array}\right)
$$

now $S_{u}^{3}\left(r l_{s}\right)=S_{u}^{3} u_{f} s^{\prime} \times D^{2}$ where $f=\binom{s^{\prime}, s}{r^{\prime}, r}$
we can build a diffeomorphism

$$
\begin{aligned}
S_{v}^{3}(r / s)= & S_{u}^{3} \\
& U_{f} \psi
\end{aligned} \quad S^{1} \times D^{2} .
$$

so lemma is clear except for surgery coefficients r_{z}^{\prime} to sort this out, let's see how the longitude and mend cain, λ_{1}, μ_{1}) of K_{i} change under ψ near U we have (only focus on K_{i}, ignore others)

Suppos k upstrands and $n-k$ down
ne. $1 k\left(U_{1} k_{2}\right)=2 k-n$

When we do a + twist we get

each orange strand goes under each green strand one fine
if arrows agree if not

so each of the k upstrands contributes

$$
\operatorname{lk}\left(U_{1} K_{2}\right)
$$

and each of the $(n-k)$ down strands contrib.

$$
-1 k\left(0, K_{i}\right)
$$

\therefore linking of orange and green is

$$
\begin{aligned}
\therefore \psi\left(\lambda_{2}\right)= & \left(l h\left(U_{1} k_{2}\right)\right)^{\prime} \\
\psi\left(\mu_{2}\right)= & \mu_{i}^{\prime}
\end{aligned}
$$

where $\lambda_{2}^{\prime}, \mu_{2}^{\prime}$ are long/merid of image of K_{i}.
$\therefore r_{1}=P_{i} g_{2}$ in $\left(\lambda_{1}, \mu_{i}\right)$ words goes to

$$
\left(\begin{array}{cc}
1 & 0 \\
\left(\ln \left(v_{1} k_{2}\right)\right)^{2} & 1
\end{array}\right)\binom{q_{i}}{p_{i}}=\binom{q_{i}}{p_{2}+q_{i} \cdot \operatorname{lh}\left(0, k_{i}\right)^{2}}
$$

in $\lambda_{1}^{\prime}, \mu_{1}^{\prime}$ coords so surgeny coeff

$$
r_{2}^{\prime}=\frac{P_{i^{\prime}}}{q_{i^{\prime}}}+\left(1 k\left(U_{1} k_{2}\right)\right)^{2}
$$

Example:

exencóé:
if $M=$ Dehn surgeny on L,
$M^{\prime}=\cdots \quad \| L^{\prime}$
then $M \# M^{\prime}=$ Dehn surgeny an $L U L^{\prime}$
L and L' separated by an \mathbb{R}^{2}
later we will see if is somewhat unusual to
get a connected sum by surgery on a knot
lemma 4:

K and K^{\prime} can link
if one arrow reversed, the new surgery coeff is

$$
P / q+n-2 / k\left(K_{l} K^{\prime}\right)
$$

Proof:

push a point on K^{\prime} near ∂D now use D to guide an isotopy

so in $S_{K}^{3}(n), K^{\prime}$ is isotopic to

we now need to see what the surgery coeff.
becomes after this isotopy
call

under the above isotopy the longitude λ^{\prime} of k^{\prime} goes to

(just push it over D as well)
let $\lambda=\lambda_{K^{\prime}}+n \mu_{k^{\prime}}+\lambda_{K^{\prime}}$
note: $\mu_{K^{\prime}}$ for K^{\prime} is still a meridian after isotopy so in $\lambda, \mu_{k^{\prime}}$ lords the surgery wolff. on $K^{\prime \prime}$ is P / q
(exrerusi, it not clear!)
but λ is not the longitude of $k^{\prime \prime}$
let's compute the linking between λ and $K^{\prime \prime}$ the linking comes from undencrossings of λ under $K^{\prime \prime}$, they are of 2 types

1) undencrossings wt K^{\prime}
2) " "woK
type 1) crossings are of 2 types
a) a strand of λ parallel to K goes under K^{\prime}
b) a strand of λ parallel to K^{\prime} goes under K^{\prime}
type a) crossings contribute O to $1 k$ since $k\left(\lambda_{k^{\prime}}, k^{\prime}\right)=0$
type b) crossings contribute $\mid k\left(k, k^{\prime}\right)$ similarly, type 2) crossings also contribute $l h\left(k, K^{\prime}\right)+n$ to the linking
so $\lambda_{K^{\prime \prime}}=\lambda-\left(2 k\left(K_{L} K^{\prime}\right)+n\right) \mu_{k^{\prime \prime}}$
now in $\lambda_{K^{\prime \prime}}, \mu_{K} "$ words

$$
\begin{aligned}
p \mu_{k^{\prime \prime}}+q \lambda & =p \mu_{k^{\prime \prime}}+q\left(\lambda_{k^{\prime \prime}}+\left(21 k\left(k_{1} k^{\prime}\right)+n\right) \mu_{k^{\prime \prime}}\right) \\
& =\left(p+q\left(n+21 h\left(K_{1} k^{\prime}\right)\right) \mu_{k^{\prime \prime}}+q \lambda_{k^{\prime \prime}}\right.
\end{aligned}
$$

so surgery weff is $\frac{p}{q}+n+21 k\left(k, K^{\prime}\right)$
a blow up of a surgery diagram is the addition of an unknotted componed, unlinked from the rest of the diagram, with surgery coff. ± 1
a blow down is the removal of such a component
note:

$$
\square^{ \pm 1} \cong 0^{\infty}=s^{3}
$$

Rolfsen
twist
so blowing up and down do not affect the manifold described by the diagram!
exencose:
show

$$
|\cdots| \circlearrowleft \pm 1 \cong \underbrace{\mid \cdots 1}_{\substack{|\cdots| \\ r_{i}^{\prime}=r_{i} \pm h^{2}\left(k_{i} \cdot v\right)}}
$$

by using handle slides (could also use Rolfsen twist)
so some times people define

example:
recall we said enliè the Poincare homology sphere 15

let's identify

blow up at right left and bottom

blow down all -1 unknots

blow down left and right - 1 unknots

blow down the -1 unknot

repeat

blow down +1 unknot

repeat

repeat

exercise:

1) Show
 is the Poricare homology sphere
2) Show

3)

show $M_{k}(18) \cong L(18,13)$ and

$$
\begin{aligned}
M_{K}(19) & \cong \pm L(19,12) \\
& \quad \operatorname{Cor} L(19,7)=-L(19,12))
\end{aligned}
$$

(Hard!)

Th 프 (Kirby, 1978):
two surgery diagrams in S^{3} with integral surgery wefficents are diffeomorphic

$$
\Longleftrightarrow
$$

they are related by a sequence of blow ups/downs and handle slides Moreover, any orientation preserving diffeom. can be realized the way
we prove this in the next section, but for now we use it to prove

Th m 5 (Fenn-Rourke, 1979):
Kirby's theorem is true without handle slides! (only need blowups and blowdouns)

Proof: first note we can do the following handle slide via blowups \& blow downs

indeed

note: this works even if purple curve runs through red curve in any way exenccie: show framings on curves work out Correctly of course we could deal with -1 framed case 14 same way
now note

and

$$
\longrightarrow \quad n^{n} \rightarrow \frac{1}{n \pm 1}
$$

so by blowups we can turn any knot

into

now can slide of this unknot as above with blowupldowns and then blow down all the green to get-back to K with something slid oven it!

Grollary 6:
Surgery diagrams in 5^{3} with rational coff. are deffeomorphic
they are related by Rolsen twists
first we need
exercise: Show a slam dunk can be done by Rolfsen twists

Hent:

$$
\frac{r}{s-(n-1) r}-1=\frac{n r-s}{s-(n-1) r}
$$

2) note blowup/down are Rolfsen twist now use trick in Th" 5 to do general case.

Proof: first use slam dunks (which are Rolfsen twists) to write surgery diagrams with integer coff.
now they are related by blow op/downs by th -5 , but these are also Rolfsen twists!
B. Seifert Fiber Spaces
exercise:

from our discussion of Seifent fiber spaces (Section IV.B) we see any SFS oven S^{2} can be written

by Rolfsen twists one can arrange all the $r_{i} \cdot<-1$ to get
exercise: there is a unique way to do this these are called the normalized Sectert invariants of the singular fibers
we denote the above SFS by

$$
\begin{aligned}
& M\left(0, e_{0} ;-\frac{1}{r_{1}}, \ldots,-\frac{1}{r_{n}}\right) \\
& \text { genus of base } 0
\end{aligned}
$$

$e=e_{0}+\sum-\frac{1}{r_{i}}$ is called the ratwial Euler number
exercise:

1) $M\left(0, e_{0} ;-\frac{1}{r_{1}}, \ldots,-\frac{1}{r_{n}}\right)$ has the same rational
homology as $S^{3} \Leftrightarrow e \neq 0$
2) $M\left(0, e_{0} ;-\frac{1}{r_{1}}, \ldots,-\frac{1}{\gamma_{n}}\right)$ has a horizontal incompressible surface $\Leftrightarrow e=0$
3) show

Hut: maybe later
4) Show the orientable S^{\prime}-bundle over $\mathbb{R} P^{2}$ is

Hint: maybe late
from above not hand to show that a SFS oven a surface of genus g with normalize Seifert invariants can be written

$$
M\left(g, e_{0} j-\frac{1}{r_{1}}, \ldots-\frac{1}{r_{n}}\right)
$$

and oven $N=\#_{n} R P^{2}$

$$
M\left(-n, e_{0} ;-\frac{1}{r_{1}}, \ldots,-\frac{1}{r_{n}}\right)
$$

Thㅡㅡ글
if $M=M\left(g, e_{0} ;-\frac{1}{r_{1}}, \ldots,-\frac{1}{r_{n}}\right)$ and $K i j$ a reqular fiben then a / b surgeny on K is
I) $M\left(g, e_{0}-(n+1) ;-\frac{1}{r_{1}}, \ldots,-\frac{1}{r_{11}} \frac{(n+1) a-b}{a}\right)$
f $\frac{a}{b} \neq 0$ and $b=n a+r \quad 0 \leq r<a$
II) $\#_{n} L\left(a_{i}, b_{1}\right) \#_{m} s^{\prime} \times s^{2}$ if $a / b=0$ and

$$
r_{2}=-\left(a_{1} \dot{b}_{1}\right)
$$

Proof:
I) clearyly $M_{K}(a / b)$ is
g coples of
$-(1)^{\circ}+g \geq 0$
-g wpies of

Rolfien twist red carve $(n+1)$ times to get

so $M_{K}\left(\frac{a}{b}\right)=M\left(g_{1} e_{0}-(n+1) ; \frac{-1}{r_{1}} \ldots,-\frac{1}{r}, \frac{a-r}{a}\right)$
II) we need a lemma
lemma 8:
suppose $K)^{n}$ is part of a surgery diagram
K can link other components but the meridian cant. then removing k and the meridian from the diagram gives the same 3 -manifold

Proof: note at a crossing of K we can isotop mencticai to see

do indicated handle slide to get

$$
\int_{0}^{-6}-C^{0}=n \pm 2
$$

so we can unknot K by crossing changes similarly, we can unlink K from rest of surgery diagram to get

MOO u rest of diagram
but

so can get to C°
Co
\downarrow blow down
\downarrow slam dunk
0^{-1}

$$
0^{\infty}=\varnothing
$$

\downarrow blow down
\varnothing
now

is same as

